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Abstract
Because most machine learning (ML) models are trained
and evaluated in isolation, we understand little regarding
their impact on human decision-making in the real world.
Our work studies how effective collaboration emerges from
these deployed human-AI systems, particularly on tasks
where not only accuracy, but also bias, metrics are paramount.
We train three existing language models (Random, Bag-of-
Words, and the state-of-the-art Deep Neural Network ) and
evaluate their performance both with and without human
collaborators on a text classification task. Our preliminary
findings reveal that while high-accuracy ML improves team
accuracy, its impact on bias appears to be model-specific,
even without an interface change. We ground these find-
ings in cognition and HCI literature and propose directions
to further unearthing the intricacies of this interaction.
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Introduction and Related Work
As AI-aided decision tools are increasingly deployed, a cen-
tral challenge remains understanding how to best design
systems to complement humans. Ergo, a growing body of
literature has arisen to study these models as screening or
recommendation systems [12], where ML acts as a data
filtering mechanism, screening massive amounts of infor-
mation and providing statistical inferences as recommen-
dations to a human decision-maker [7]. The foundational
belief behind these hybrid systems contends that humans
and AI exhibit differing strengths and weaknesses—thus,
good system design should be able to leverage the com-
plementary strengths of both to formulate the optimal team
[11]. Recent work demonstrates that although hybrid sys-
tems designed for collaboration can improve performance
beyond that of the human or machine alone, high algorith-
mic accuracy does not always translate to team accuracy
[16], suggesting a more nuanced decision process at play.

Human Bias: Biases are
best described as heuris-
tics, or mental shortcuts,
that humans take when
evaluating decisions under
uncertainty [10]. They range
from availability bias [15],
the tendency to judge the
frequency of events by the
ease with which examples
come to mind, to hindsight
bias [6], the tendency to
overestimate one’s ability to
have predicted an outcome
ex ante. Although scenarios
in which bias can manifest
itself have been widely stud-
ied, strategies for consistent
mitigation are still limited.

Algorithmic Bias: While
ML continues to achieve
higher than ever seen be-
fore accuracy rates, a key
question becomes: accurate,
but for whom [3]? Parities in
algorithmic performance be-
tween different groups have
resulted in discrimination
against black defendants in
assessing bail [2], misidenti-
fication of minority groups in
facial recognition tasks [14],
and unequal ranking of job
candidates by gender [8].

Moreover, because real-world application areas like medical
diagnosis [13], loan approvals [1], and criminal risk assess-
ment [2] deal with incorporating sensitive attributes like race
and gender in training techniques, it has necessitated un-
derstanding how bias percolates through ML systems. A
brief overview of algorithmic fairness work ranges from ap-
proaches that seek to mitigate bias using techniques that
are "unaware" of protected attributes like race and gen-
der [5] to more sophisticated techniques that seek to im-
pose fairness as a "constraint", defined by the prevalence
of protected attributes, to limit undesirable correlations in
data [9]. Although most algorithmic fairness efforts have
focused on de-biasing models, we still have yet to under-
stand how these different iterations impact decision-making
in a hybrid system. In other words, if an algorithm learns to
be more accurate and exhibit less bias, do those improve-
ments translate into better collaborative decision-making?

Figure 1: A hybrid human-AI system for hiring. A ML model is
trained to evaluate candidate profiles and output its predictions to
a human, who chooses to accept those recommendations or not.
The goal is to produce a collaborative decision that is both
accurate and unbiased.

Experimental Setup
We scrape and compile a corpus of professional biogra-
phies from the Internet and extract their occupations and
genders [4]. We train three existing ML models (Random,
Bag-of-Words (BOW), and the SotA de-biased Deep Neural
Network (DNN)) to predict a biography’s occupation without
the ground truth label, using candidate gender as a feature.
We devise a task where we evaluate the performance of
these models on distinguishing between selected occupa-
tion pairs (i.e. doctor and nurse) and measure their perfor-
mance on two axes: accuracy (how well the model identi-
fies the correct occupation) and bias (whether the model is
more accurate for female vs. male candidates).

Next, we deploy a crowdsourced version on AMT of the
same task, both with and without ML predictions incorpo-
rated as recommendations, to quantify the differential effect
on human decision-making. In this way, we can measure
individual human and model performances as well as hybrid
system performance, each along two performance axes.



Preliminary Results
Accuracy: Our preliminary findings suggest that effec-
tive human-AI collaboration with respect to accuracy does
emerge–a more accurate ML improves human accuracy
while a less accurate one does not harm accuracy.

Bias: We first observe that humans and ML do not ex-
hibit the same biases–that is, occupations where human
decision-makers exhibit significant preferences for one gen-
der over another are not reflected by the AI and vice versa.
We then investigate collaboration with respect to these bi-
ases and find that the impacts of different AI recommenda-
tions are also model-specific: the Random and DNN mod-
els (which were both designed to be de-biased with respect
to gender) generally mitigated both human and model bi-
ases whereas the BOW appeared to induce hybrid bias.

Decision-Making Differences: In seeking to explain this
effect, we observe an interesting phenomenon: human
decision-makers accept and conform to the DNN and Ran-
dom models at a rate that is significantly less (µ = 0.69,s =
0.03) than to the BOW (µ = 0.81,s = 0.04), even though
the interface remained unchanged between models.

Conclusion and Future Directions
In our work, we set out to uncover how human decision-
making within collaborative systems is impacted by different
AI recommendations and model types. Our preliminary find-
ings reveal that the establishment of effective collaboration
is a nuanced affair that is not only impacted by algorithmic
accuracy, but also other axes such as model bias, classifi-
cation task, and potentially even training technique.

In follow-up work, we hope to explore additional features of
consideration, such as human cognitive priors for decision-
making, the effect of learning over time, and factors for
model conformity. We must also disentangle the inherent

Figure 2: A visual highlighting the interaction of biases for
classifying surgeons, plotted again female and male accuracy. The
bottom left represents a less accurate, and the top right a more
accurate model. Interpolation lines are drawn to represent the
expected trendline of decision-making if no consistent behavioral
difference in the hybrid decisions existed. The DNN appears to
mitigate bias (the resulting H+DNN performs statistically close to
the unbiased line) whereas the BOW accentuates bias.

reasoning differences in how people treat Random and
generally uninterpretable AI. By computationally model-
ing this interaction through the entire decision process, we
hope to further illuminate the intricacies of how to best de-
sign for human-AI partnership in deployed systems.
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